

MISRA AC INT:2025

Introduction to the MISRA guidelines for the

use of automatic code generation in

embedded systems

January 2025

First published January 2025 by The MISRA Consortium Limited

1 St James Court

Whitefriars

Norwich

Norfolk

NR3 1RU

UK

www.misra.org.uk

Copyright © The MISRA Consortium Limited 2025.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or

transmitted in any form or by any means, electronic, mechanical or photocopying, recording or

otherwise without the prior written permission of the Publisher.

“MISRA”, “MISRA C” and the triangle logo are registered trademarks owned by The MISRA Consortium

Ltd.

Other product or brand names are trademarks or registered trademarks of their respective holders

and no endorsement or recommendation of these products by MISRA is implied.

ISBN 978-1-911700-13-5 PDF

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

i

MISRA AC INT:2025

Introduction to the MISRA guidelines for the

use of automatic code generation in

embedded systems

January 2025

March 2023

ii

MISRA Mission Statement

MISRA provides world-leading best practice guidelines for the safe and secure application of both

embedded control systems and standalone software.

MISRA is a collaboration between manufacturers, component suppliers, engineering consultancies and

academics which seeks to research and promote best practice in developing safety- and security-

related electronic systems and other software-intensive applications.

To this end, MISRA conducts research projects and publishes documents that provide accessible

information for engineers and management.

MISRA also facilitates the dissemination and exchange of information between practitioners through

supporting and holding technical events.

Disclaimer

Compliance with these guidelines does not in itself ensure error-free robust software.

Compliance with the requirements of this document, or any other standard, does not of

itself confer immunity from legal obligations.

iii

Acknowledgements

The MISRA AC Working Group

The MISRA Consortium would like to thank the following current members of the MISRA AC Working

Group and other individuals for their significant contributions to the writing of this document and

during its review process:

Richard Blachford HORIBA MIRA

John Botham Ricardo UK

Bill Burdock Formerly Jaguar Land Rover

Ivan Ellis Jaguar Land Rover

Alasdair Mitchell BorgWarner

Chris Rowell Ricardo UK

David Ward HORIBA MIRA

The MISRA Consortium would also like to thank the following past member of the MISRA AC Working

Group for his contributions to this document via material in the first edition:

Steve Montgomery

Other Acknowledgements

This document was typeset using Open Sans. Copyright 2020, The Open Sans Project

Authors. Licensed under the SIL Open Font License, 1.1.

iv

Contents

1 Executive summary 1

2 Revisions to MISRA AC INT 1

3 Background 1

4 Language and process issues 2

4.1 Concepts 2

4.2 Modelling language considerations 2

4.2.1 Choice of modelling language 2

4.2.2 Modelling language semantics and standardization 2

4.3 Automatic code generator considerations 3

4.4 Process considerations 3

5 Autocode guidelines document scope and structure 5

6 References 6

7 Revision history 7

1

1 Executive summary
The MISRA Autocode Guidelines (MISRA AC) family of documents deals with the application of language

subsets for automatic code generation purposes in embedded systems. This document, MISRA AC INT,

explains the structure of, and relationships between, the MISRA AC documents.

2 Revisions to MISRA AC INT
This revision of the document, MISRA AC INT:2025, is based on the original version, 1.0, published in

2007. The document has undergone extensive revision to reflect the changes in the MISRA AC

document family and related standards, and the advances in use and awareness of modelling and

automatic code generation approaches since that time.

Whilst the MISRA Autocode Guidelines documents originated within the automotive industry, they are

not automotive specific and can readily be used in other contexts. This revision of the document has

been renamed to reflect this.

3 Background
Developers of embedded control systems have been accustomed to using models in the development

process for several decades. A model is a graphical representation of the control system that is

constructed in, and can be run using, a modelling package. Automatic code generation is a process in

which these models are then translated into an equivalent source code representation for

incorporation into the software of the embedded system.

Automatic code generation has long been popular as a means of speeding up the development of

prototype control applications because of the relative ease with which changes to a control model can

be reflected in the software executing in an electronic control unit (rapid prototyping). It is also

frequently used in hardware-in-the-loop (HiL) systems to generate real time simulations of the plant

under control, such as an engine (plant modelling).

Crucially, however, automatic code generation has also become increasingly common as a means of

allowing source code for production embedded systems to be created from executable models

without detailed programming knowledge.

The MISRA guidelines for the use of automatic code generation in embedded systems (hereafter

referred to as the MISRA Autocode Guidelines) provide guidance on how to deploy these techniques

robustly for production.

Although the guidelines are aimed especially at the use of automatic code generators in safety-related

systems, they are applicable wherever high-quality models are needed, including plant models.

2

4 Language and process issues

4.1 Concepts

A model is a diagram drawn according to the rules of a modelling language. There are several modelling

languages in which models can be developed. Models are usually viewed in a graphical representation

and edited using a graphical editor, even though the underlying notation may be textual or

mathematical. Models are “executable” by simulation in the modelling package, a process analogous

to interpretation of some programming languages.

An automatic code generator is a tool that translates a model from a modelling language representation

into a target language representation (known as automatically generated code or autocode). The process

of automatic code generation is analogous to that of compilation of a programming language, in that

the high-level representation of a program is transformed into a lower-level representation. For

example, C compilers typically translate the C source code into assembly language1 (from which an

executable image is derived using an assembler and linker). In a similar way, an automatic code

generator is designed to process programs written in a modelling language and deliver output in the

form of source code in the target language.

Automatic code generators often require supplementary information to be linked to a model to be

able to translate the model correctly. For a given modelling language there may be several automatic

code generators that are capable of translating models into a target language. The nature and format

of supplementary information is normally specific to the automatic code generator being used.

C remains a highly popular target language, especially for automotive applications. Other target

languages are possible, for instance C++ or Ada.

4.2 Modelling language considerations

4.2.1 Types of modelling language

Modelling languages are divided broadly into two categories: object-oriented languages and

dataflow-oriented languages.

UML and its variant (or “profile”) SysML are widely used object-oriented modelling languages. UML and

SysML naturally lend themselves well to object-oriented problems but their adoption for automatic

code generation has largely lagged behind that of dataflow-oriented languages.

Simulink and Stateflow are popular dataflow languages. Others include SCADE and ASCET.

The MISRA Autocode Guidelines are currently concerned solely with dataflow languages since these

are more widely used for automatic code generation.

4.2.2 Modelling language semantics and standardization

Programming languages provide programmers with an abstraction of the machine on which their

program will execute. To be useful, a programming language should have a well-defined syntax

1 This can involve a single tool or a pair of front- and back-end tools communicating via

an intermediate language.

3

(grammar) and semantics (meaning) in order that a programmer can accurately predict, and reason

effectively about, the behaviour of a program when it is executed.

The syntaxes and semantics of high-level programming languages are typically complex but relatively

well defined. The C programming language, for example, has an ISO standard [1]. There are some

semantic areas in C that are unspecified, intentionally undefined or left open for interpretation by the

C language implementer. Most of these areas are well-documented in the ISO standard. Further

guidance on avoiding these areas — and on other constructs whose semantics may differ from the

programmer’s expectation — is provided by documents such as MISRA C [2]. These define language

subsets.

Modelling languages are also typically complex. However, the precision and degree of standardization

with which the syntax and semantics of a modelling language are defined varies significantly according

to the language. Documents defining modelling language subsets, such as MISRA AC GMG [3] and

MISRA AC SLSF [4], can be essential to give guidance on avoiding ill-defined or easily-misunderstood

constructs at the model level in a similar way to which MISRA C does for C.

4.3 Automatic code generator considerations

It is generally possible for automatic code generators to produce code that uses undesirable features

of the target language, such as those whose semantics are undefined. This could occur due to, for

instance, the modelling language features used in — or supplementary information provided with —

a model, the user’s configuration of the tool, or the programming of the code generator itself. For this

reason, similar criteria can be applied to automatically generated code as to manually produced code.

Guidelines at the model level and, if available, on the use of the automatic code generator can be

applied to aid in avoiding modelling language or tool features that lead to the generation of code with

unwanted features. Such guidelines can also aid in avoiding modelling language or code generator

features that may give rise to code whose behaviour deviates from that intended (including, potentially,

deviations from the behaviour of the model in simulation).

4.4 Process considerations

The MISRA Autocode Guidelines can be used in isolation but are expected to form part of a coherent

process covering the production and verification of models and of the code generated automatically

from them.

For instance, ISO 26262 [5] Part 6 Product development at the software level was written with model-

based development and automatic code generation as a use case, alongside more traditional manual

coding processes. Where model-based development is in use this can lead to tailoring of the software

lifecycle; for example, unit testing and integration testing are permitted to be performed on the model,

and code generated from the integrated model. To support the robustness of such a process,

ISO 26262 includes the following requirements:

• Appropriate modelling and programming languages must be selected that meet certain

requirements;

• If these requirements are not directly achieved by a language, then language subsets and

analysis tools are to be applied;

• Specifically in the case of modelling languages, the graphical representation must be

unambiguous in conjunction with the use of modelling style guidelines;

• Static analysis is applied to the model, along with certain other analyses such as control

flow analysis, data flow analysis and analysis of structural coverage during testing;

4

• Back-to-back testing is required, whereby a model and the generated code are stimulated

with the same test cases, and it is ensured that the results are comparable.

5

5 Autocode guidelines document scope and

structure

The MISRA Autocode Guidelines are structured hierarchically with levels corresponding to:

• Generic guidelines, applicable to all modelling languages;

• Guidelines specific to a particular modelling language;

• Guidelines specific to a particular automatic code generator;

• Guidelines specific to the target language generated by the automatic code generator.

Originally, one set of guidelines was provided at each level. MISRA’s policy is now to maintain guidelines

only at the top two levels for the following reasons:

• Code generator guidelines are best developed and maintained by the respective tool

vendors, who will be better equipped to keep the guidance in line with their tool updates.

• For C, guidelines specific to the target language are now integrated into MISRA C.

For each level of the hierarchy, Table 1 summarizes the documents that are currently recommended

at the time of issue of this document and that are previously available but now deprecated.

To be effective, the guidelines applied to a development project — whether MISRA guidelines or from

other sources such as the code generator vendor — should cover each level in the hierarchy.

Table 1: Current and deprecated documents in the MISRA Autocode Guidelines series

Level Current documents Related notes Deprecated documents

Generic level MISRA AC GMG [3] 1, 3 —

Modelling language level MISRA AC SLSF [4] 1, 3 —

Code generator level — MISRA AC TL [6]

Target language level Included in MISRA C [2] 1, 2, 3 MISRA AC AGC [7]

Notes:

1. MISRA Compliance [8] should be applied at all levels. The Compliance appendices of the

MISRA Autocode Guidelines documents identify adaptations for its use at the level of

modelling.

2. For application to automatically generated code, the guidance formerly found in MISRA AC

AGC has been incorporated into MISRA C since its 2012 edition, including a rule re-

categorization scheme. A template Guideline Reclassification Plan (GRP) reflecting this

scheme is forthcoming at the time of issue of this document.

3. Users should consult the MISRA website and discussion forum for further document

revisions and related publications, including errata or amendments.

6

6 References
[1] ISO/IEC 9899:2018, Information technology — Programming Languages — C, International

Organization for Standardization, 2018

[2] MISRA C:2023 Guidelines for the Use of the C Language in Critical Systems, ISBN 978-1-911700-08-1
(paperback), ISBN 978-1-911700-09-8 (PDF), The MISRA Consortium Limited, 2023

[3] MISRA AC GMG:2023 Generic modelling design and style guidelines, ISBN 978-1-906400-04-3
(paperback), ISBN 978-1-906400-05-0 (PDF), The MISRA Consortium Limited, 2023

[4] MISRA AC SLSF:2023 Modelling design and style guidelines for the application of Simulink and
Stateflow, ISBN 978-1-911700-07-4 (paperback), ISBN 978-1-911700-06-7 (PDF), The MISRA
Consortium Limited, 2023

[5] ISO 26262:2018 series, Road vehicles — Functional Safety, International Organization for
Standardization, 2018

[6] MISRA AC TL Modelling style guidelines for the application of TargetLink in the context of automatic
code generation, ISBN 978-1-906400-01-9 (PDF), Motor Industry Research Association, 2007

[7] MISRA AC AGC Guidelines for the application of MISRA C:2004 in the context of automatic code
generation, ISBN 978-1-906400-02-6 (PDF), Motor Industry Research Association, 2007

[8] MISRA Compliance:2020 Achieving compliance with MISRA Coding Guidelines, ISBN 978-1-906400-
26-2 (PDF), HORIBA MIRA Limited, 2020

7

7 Revision history

Revision Description of changes Release date

Version 1.0 First version release November 2007

MISRA AC INT:2025 Second version release, reviewed and revised throughout January 2025

	1 Executive summary 1
	2 Revisions to MISRA AC INT 1
	3 Background 1
	4 Language and process issues 2
	4.1 Concepts 2
	4.2 Modelling language considerations 2
	4.3 Automatic code generator considerations 3
	4.4 Process considerations 3

	5 Autocode guidelines document scope and structure 5
	6 References 6
	7 Revision history 7
	1 Executive summary
	2 Revisions to MISRA AC INT
	3 Background
	4 Language and process issues
	4.1 Concepts
	4.2 Modelling language considerations
	4.2.1 Types of modelling language
	4.2.2 Modelling language semantics and standardization

	4.3 Automatic code generator considerations
	4.4 Process considerations

	5 Autocode guidelines document scope and structure
	6 References
	7 Revision history

